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Abstract

A novel non-standard positional numeral system is de-

scribed, motivated by the need to represent numbers in

a human-accessible format but using fewer digits than

decimal would require. The factored radix numeral sys-

tem FR(P ,S) can represent a number with the same

economy of digits as base PS but with the advantage,

where S = 10, of easier transformation to and from

decimal. A property of the system is that any FR(P ,10)

number differs from the decimal representation only if

it uses fewer digits. For example, the decimal number

426 changes in base 20 to 116, even though it still

requires three digits, whereas the canonical FR(2,10)

representation is 426, as in decimal. Also described

are two mnemonic higher-base digit alphabets, limited

respectively by a seven-segment display constraint and

the ASCII character set.

Keywords: numeral systems, systems of numeration,

number representation, number systems, digit symbols.

1 Introduction

The general motivation for using a base higher than 10

to represent numbers is economy of representation. For

example, the use of a base-20 system for Open Location

Codes [1] produces shorter codes than would a decimal

system. In many contexts, this benefit is secured at no

cost, since the numbers are opaque to users. In other

contexts, however, it can be desirable not only that a

number be represented with fewer digits than decimal

would require, but also that it be in a form convertible

to decimal with relative ease by a person.

*This document is https://mbreen.com/fr.pdf. To contact the au-

thor, see https://mbreen.com

In an electronic context, consider a need to represent

a number in the range 0. . . 6000 on a display limited

to three digits. A possible solution is to use a higher

number base. In this case, base 19 would suffice, but

it would be a poor choice, with place values of 1, 19,

and 361 making the mental arithmetic for conversion to

decimal unnecessarily difficult. Choosing a base that is

a multiple of 10 improves this, but the sum-of-products-

of-powers arithmetic remains difficult. Further, the val-

ues of the digits beyond the decimal range must be

learned and remembered. Even for technical users, a

display with more digits must strongly be preferred to a

non-decimal numeral system.

A further constraint is possible. Imagine that a device

with a three-digit display presents values in decimal, but

later the range of values that it needs to display grows

beyond the anticipated range. A software upgrade is

required to represent values greater than 999 in three

digits. To avoid confusion, any numeral which looks

like decimal must continue to be safely interpretable as

decimal, so a switch to base 20 which causes, e.g., 20

to be displayed as 10 is not acceptable.

Scenarios similar to these can be conceived with re-

spect to physical objects which can accommodate only

a limited number of digits, such as vehicle registration

plates, or non-physical identifiers. To take a familiar se-

ries of numerals as an (unlikely) example of the latter,

suppose that the RFC Oversight Committee wants to

limit RFC numerals to four digits while preserving the

ordinal values of the existing identifiers, since renum-

bering is impossible. What numeral is assigned to the

RFC following RFC 9999? Y2K-style problems in gen-

eral fit the theme.

In many contexts, it may be possible to sidestep the

problem. For an electronic display, scrolling may be

considered, or the digits of, e.g., a three-digit display

could be flashed to indicate that 1000 should be added

to the number shown, doubling the range; the decimal
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points of seven-segment displays, if otherwise unused,

offer similar potential. In other cases, however, such

workarounds may not be available (e.g., a flashing dis-

play may already carry a warning semantic). The rest

of this article assumes a solution space restricted to the

numeral system.

The following sections begin with a problem state-

ment, followed by an examination of some alterna-

tive solutions. I then introduce the factored radix nu-

meral system, examine its relative ease of conversion to

decimal, and show how that may be improved with a

mnemonic alphabet. I define its extension to fractional

numbers, and note some inherent limitations. The fac-

tored radix system is then formally classified and com-

pared with some other systems of numeration. The ar-

ticle concludes with a brief summary.

Terminology: In this article, a digit is any symbol

that represents a number. A decimal digit is a digit in

the decimal range (0..9), regardless of whether it ap-

pears in a decimal, vigesimal, or other number. A nu-

meral is a string of one or more digits. A numeral sys-

tem maps numerals to numbers (or values). A deci-

mal number is the decimal representation of a number,

which is not to be confused with a numeral which con-

tains only decimal digits but is meant to be read as, e.g.,

vigesimal. Numerals are shown in a fixed-width font,

e.g., 312; when I want to refer to a number indepen-

dent of its representation, it is in decimal in a standard

font.

2 Problem statement

From the introduction, there are two distinct problems:

- The interpretation problem: Mental conversion of

a numeral to the familiar decimal system can be

difficult for two reasons: (a) the mental arithmetic

problem, reflecting the number of steps and work-

ing memory required to perform any calculation

that is required; (b) the cipher problem, reflecting

any difficulty in learning and recalling the meaning

of additional symbols.

- The decimal superset problem: Define a numeral

system in which the decimal numerals have their

decimal values but which extends the n-digit range

beyond 10n.

Any solution to the decimal superset problem is at

least a partial solution also to the interpretation prob-

0 0123456789

1 abcdefghij

2 klmnopqrst

Figure 1: Conventional alphabet of digits supporting

numerals in bases up to base 30, arranged in decades.

lem, since the first 10n values require no interpretation.

Therefore the latter problem can be a starting point.

3 Alternative decimal supersets

To define a superset of decimal is obviously not diffi-

cult. One possibility is to use decimal again, but with a

different digit alphabet, e.g., using a for 0, b for 1, etc.

If constrained to 4 digits then numbers 1. . . 9999 are in

decimal after which aaaa is 10000, aaab is 10001,

etc., up to jjjj for 19999; in general, the value of an

n-digit numeral N in the second alphabet is 10n+N10.

Conversion of such a numeral to decimal involves no

arithmetic: just replace each letter with the correspond-

ing decimal digit and put a 1 in front. This can be called

the disjoint decimal solution. If a doubling of the deci-

mal range suffices then it is a good solution and nothing

else needs to be considered.

Otherwise, to get the full 20n range one would ex-

pect from 20 different digit symbols, an option is to

use decimal up to 10n, and then base 20 with a dis-

joint alphabet, e.g., a. . .t for 0. . . 19, for 10n and larger

numbers. In this system, crnh would have the value

2 · 203 +17 · 202 +13 · 20+ 7 = 23067. However, this

avoids the mental arithmetic problem only for the first

10n numbers.

For the rest of this article, every alphabet will begin

with digits 0. . .9. Until the subject of alphabets is con-

sidered again below, the usual convention will be fol-

lowed of using a for digit value 10, b for 11, etc., as

shown in Figure 1.

A variation on the above is to use the base 20 numer-

als generated by the alphabet of Figure 1 to extend the

range, skipping any numeral composed only of decimal

digits. Figure 2 shows this idea applied where the num-

ber of available digits n = 4. In this system, the value

v(N) of a numeral N containing a non-decimal digit is

given by

v(N) = 10n +N20 − δ(N)

where N20 is the value of N considered as a base 20
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numeral value

0 0

. . .

9999 9999

000a 10000

. . .

000j 10009

001a 10010

. . .

jjjj 159999

Figure 2: Decimal extended with non-decimal base 20

numerals.

number and δ(N) is the number of base 20 numbers

less than N which have only decimal digits.

Noting that the largest base 20 number less than N
which is composed only of decimal digits, if consid-

ered as a decimal number, is equal to a count of the

numbers skipped excluding 0, a little reflection shows

that a general way to compute δ(N) is:

1. Find the most significant non-decimal digit in N .

2. Replace that and each less significant digit with 9.

3. Treating the result as a decimal number, add 1.

As a complete example of conversion to decimal of a

numeral with a non-decimal digit, considerN = 2hg7:

v(2hg7) = 104 + 2hg720 − δ(2hg7)

2hg720 = 2 · 203 + 17 · 202 + 16 · 20 + 7 = 23127

δ(2hg7) = 2999 + 1 = 3000

v(2hg7) = 10000 + 23127− 3000 = 30127

The problem, of course, is that the procedure still

involves base 20 conversion arithmetic. If the non-

decimal base 20 numerals are to be used then they must

be ordered according to a different principle.

4 The factored radix numeral sys-

tem

The basis of the factored radix numeral system FR(P ,S)

is quickly seen by example. The decimal number

123456 may be converted to FR(2,10) as follows, il-

lustrated in Figure 3:

123456 decimal

separated into:

1100 prefix (12) expressed in base 2

3456 stem in base 10

combined into:

de56 FR(2,10)

Figure 3: Conversion of a base 10 number to FR(2,10).

1. Lexically separate the numeral into a prefix and

a stem. The prefix is constrained to be no longer

than the stem when converted to base P : in this

case, P = 2 and the first two digits (12) can be

taken for the prefix.

2. Convert the prefix to base P (1100).

3. Take each digit in the stem and add to it the value

of the corresponding digit in the base-P prefix

multiplied by S. The result is the value of the cor-

responding digit in the FR(P ,S) representation. In

Figure 3, the first digit value is 13, which in the

above alphabet is d.

The prefix will sometimes necessarily be empty,

equivalent to a value of 0. Trivially, this is the case

for all numbers less than S: the decimal number 7 is

also 7 in FR(2,10), as it is in base 20. Unlike base 20,

however, a decimal number such as 835 which cannot

be shortened is unchanged when converted to FR(2,10)

(whereas in base 20 it becomes 21f).

A numeral in FR(P ,S) is in canonical form if it is

the minimum length representation, that is, if its prefix

component is the maximum possible length. However,

any shorter prefix can be chosen, including an empty

one. This means that any decimal number is also a

FR(P ,10) number with the same value, for any P . In

practice, a specified length will determine the represen-

tation of each number: for a four-digit display, it makes

sense to use decimal up to 9999 and thereafter to use

the minimum prefix required to limit the length to four

digits; in effect, the maximum length is also the desired

length.

Figure 4 shows a conversion in the reverse direction,

this time from a numeral in FR(3,10) (the factored radix

equivalent of base 30) to decimal. The steps are:

1. Divide each digit value by S (10): the quotient

gives the corresponding digit of the base-P pre-

fix, and the remainder gives the value of the corre-

sponding digit of the stem. In this example, there

is a digit n which has the value 23 = 2 · 10 + 3.
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05n9 FR(3,10)

decomposed:

0020 prefix in base 3 (decimal 6)

0539 stem in base 10

concatenated:

60539 decimal

Figure 4: Conversion from FR(3,10) to base 10.

2. Convert the prefix to base S.

3. Concatenate the stem and the prefix.

The conversion procedures follow directly from the

formal definition, which is more concise: Using PΠS
as a “pseudo-base” suffix, the value NPΠS of a numeral

N in FR(P ,S), P > 1, S > 1 of n digits with values

dn−1 . . . d0, each in the range 0 . . . PS − 1, is

NPΠS =

n−1∑

i=0

(di mod S)Si + Sn(⌊di/S⌋)P
i

It is easily seen that the range of an n-digit numeral

in FR(P ,S) is equal to the product of the range of the

prefix and the range of the stem, and so is equal to the

range of an n-digit numeral in base PS:

PnSn = (PS)n

When FR(3,10) is described as being equivalent to

base 30 this is what is meant.

5 Ease of interpretation

In respect of the mental arithmetic dimension, the inter-

pretability of, for example, FR(2,10) relative to base 20

rests on the separation of the numeral into stem and pre-

fix components. Just as, e.g., multiplication or division

by a power of two becomes easier when a number is

represented in binary, composing the decimal represen-

tation from the two parts is a trivial lexical operation

with no mental arithmetic.

In the felicitous case, the decimal form of the num-

ber does not need to be shortened: there is no prefix and

the stem is simply the decimal number unchanged. This

compares well to the base 20 alternative where, unless

it is a single digit, arithmetic is always required. Of

course, in the case of, e.g., n = 4 (four digits), the fe-

licitous case amounts to only 1

16
of the range. However,

it may still be that the numbers to be represented fall

more frequently in that decimal range, so that, much of

the time, no interpretation is necessary.

Where the factored radix form does differ, most of

the digits of the decimal number will generally come

from the stem (in the case of FR(2,10) with n = 4,

four of at most six digits). Any decimal digit in the FR

number is unchanged and in the same position in the

stem. Each of the other digits of the stem is the value of

the corresponding digit in the FR number modulo 10.

For a person, the mental modulo-10 operation amounts

to no more than choosing the units part of the decimal

value.

Similarly, getting the digits of the base-P form of the

prefix involves only choosing the tens part of each deci-

mal value. Arithmetic is required only at the remaining

step of converting the prefix from base P to base 10.

Disregarding the lexical parts as comparatively insignif-

icant, the effort in the arithmetic dimension therefore

reduces to a conversion from base P to base 10. Men-

tal conversion to decimal of an n-digit base 2 number is

typically much easier than an n-digit base 20 number,

and the same is true for P > 2.

While the arithmetic is much easier, it may be noted

that there remains a potential conceptual gap unmen-

tioned above: for readers of this article, the concept of

numbers in a base other than 10 will be intimately fa-

miliar, but for others it may require explanation; other-

wise, factored radix numbers will be transparent only in

the decimal range.

The remaining effort is in the cipher problem, that

is, memorizing the values of the non-decimal digits.

This is a problem which affects FR(P ,10) and base 10P
equally. In the case of the latter, however, any easing

of the cipher problem leaves a significant mental arith-

metic hurdle. Where the mental arithmetic problem has

already been addressed, the value in reducing the cipher

problem is far greater. Thus, for factored radix num-

bers, it becomes very worthwhile to give some thought

to the choice of alphabet.

6 Digit alphabets

The rule to construct a digit alphabet like that of Fig-

ure 1 is simple: append the letters of the Latin alphabet

to the decimal digits; if necessary, use both uppercase

and lowercase. While the rule to construct it is simple,

one would not wish to need to do that to determine the

value of a digit, or alternatively to do a mental count to

recover its ordinal position. Any mnemonic basis for
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Figure 5: A mnemonic alphabet for a seven-segment

display (up to base 60, with base 20 highlighted).

learning and recall therefore has potential value. This

section presents two such schemes, one suited to the

constrained context of a seven-segment display, and an-

other limited to the Latin alphabet. These are illustra-

tive, not normative: the factored radix system is not de-

fined by the choice of alphabet.

A seven-segment display is designed for decimal dig-

its and cannot show certain letters, such as W. However,

an arbitrary subset of its segments can be activated. Fig-

ure 5 shows a possible choice of alphabet. Each digit in

the range 10. . . 19 is the same as the corresponding digit

in the decimal range but with one segment switched off.

A binary/octal principle is used for additional decades,

supporting up to FR(6,10).

If the range is adequate, FR(2,10) is clearly the easi-

est choice: to get the value of the prefix in binary simply

note which digits are “broken”; to get the digits of the

stem, just copy the existing numbers, “fixing” any bro-

ken digits.

For an ASCII character set, Figure 6 shows an al-

phabet also based on a similarity principle, the Deci-

mal Morphology Alphabet (DMA). Here, z (value 12)

is chosen because it is shaped like 2, and the modulo-

10 correspondence for s, b, and q is equally direct. The

letters w, f, v are the result of rotating the correspond-

ing digit clockwise, while x is a clipped 8. The lower-

case digits for multiples of 10 are clipped 0s, ascending

in alphabetical order.

The “twenties” use weaker, second-choice mnemon-

0 0123456789

1 cjzwfsbvxq

2 nltmhgdrkp

3 CJZWFSBVXQ

4 NLTMHGDRKP

5 uiyeaUIYEA

Figure 6: The Decimal Morphology Alphabet (DMA).

2022 decimal

40 prefix (20) in base 5

22 stem in base 10

T2 FR(5,10), DMA

Figure 7: Representing a year in FR(5,10).

ics, where resemblance involves a rotation other than

a quarter turn clockwise or a reflection. The digit

l is deemed inferior to j in that it is confusable in

some fonts with 1. The digit k is a deformed x, and

the mnemonic basis for digits t (22) and g (25) is

sufficiently weak that they may be learned as excep-

tions. The last decade is included for completeness but

is best avoided, both because using vowels introduces

an increased likelihood of collisions with natural lan-

guage words, and because some letters have lost any

mnemonic correspondence to their modulo-10 values.

Once again, therefore, FR(2,10) with the base 20 sub-

set is obviously easiest to use: to derive the 1s of the

prefix in binary, just note which digits are letters; to re-

cover the decimal digits of the stem, just replace any

letter with the standard decimal digit it resembles.

Where the range of FR(2,10) is inadequate, it is al-

most as easy to move to FR(5,10) as FR(3,10), since the

thirties and forties are simply the uppercase versions of

the preceding decades. Conversion of a base 5 prefix

to decimal is also comparatively easy. Using FR(5,10),

two digits can represent a value up to 2499, a range ad-

equate for Gregorian years for some centuries to come.

Figure 7 shows an example. Using the DMA, the 2020s

are T0. . .T9, the 2030s are M0. . .M9, and so on.

Again, these alphabets merely demonstrate the po-

tential ease of interpretation of the factored radix form.

The choice of alphabet in a particular case may depend

on a variety of context-specific constraints.
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4v.5 FR(2,10), DMA.

247.5 decimal

Figure 8: A fractional FR(2,10) numeral and decimal

equivalent.

7 Fractional numbers

For fractional numbers, it is easiest to begin by stat-

ing the semantics of a factored radix numeral with a

decimal point (strictly, radix separator, which may be a

comma; a point is used here). The simple rule is that

the value in decimal (for S = 10) is found by convert-

ing the digits of the FR numeral as if it were a whole

number, i.e., as if the decimal point were absent, but

keeping the decimal point in the same position in the

stem. Figure 8 shows an example.

All digits continue to be significant, including not

only leading zeros but also any trailing zeros, despite

the decimal point. In Figure 8, if 4v.5 were to be re-

placed with 4v.50 then the value in decimal would

change from 247.5 to 447.5.

Fractional numbers introduce additional considera-

tions in the conversion to factored radix form. Is the

decimal point to be in a fixed position or is it be moved

to include more digits of a small number, or absent in

the case of a large number? An appropriate unit scale

must be chosen, bearing in mind that a number in which

the integer part is zero will be unchanged in factored

radix form (since the prefix cannot consume the dec-

imal point). The decimal point makes it possible to

drop less significant digits, but this must be done before

conversion: for FR(2,10) DMA and a maximum width

of four digits, not counting the decimal point, decimal

120.762 becomes c.v62, but 160.762 must be

rounded to 160.76 before being converted to 60.7b.

In short, the interpretation of a factored radix num-

ber which includes a decimal point remains facile, but

procedures to construct it may vary.

8 Limitations

Numbers in factored radix form are clearly not designed

to be amenable to native arithmetic. This should not

be a concern, given that in many contexts mental arith-

metic would not typically be required. In other scenar-

ios it is likely to involve a conversion anyway, for ex-

ample, where one wishes to know the decimal year 15

years after a year X expressed in factored radix form.

The construction of factored radix numerals also

frustrates lexicographic sorting, regardless of the alpha-

bet. Again, this should not be a concern, since manual

sorting of numerals should be unusual.

Although not relevant to its use as descibed here, it

is worth noting that the factored radix system produces

numerals in which leading zeros are significant, but can-

not itself shorten a numeral with a significant leading

zero: a 0 prefix, if encoded, would be indistinguishable

from an empty prefix.

9 Comparisons

The literature on numeral systems is extensive, ranging

from “anormal systems” [2] (e.g., a system based on

the golden ratio [3]) to Zeckendorf representation [4].

For this article, contributions can be divided into those

concerned with the parameters of the familiar positional

systems and those which differ from such systems in

formal structure.

The standard integer-radix place-value system has

invariably been taken for granted in modern propos-

als motivated by human factors. The concern of these

contributions has instead been with the choice of base,

e.g., advocating the general adoption of base 12, or

with choosing alternative digit symbols with a more

mnemonic or logical basis. Examples of the latter from

the nineteenth and twentieth centuries respectively in-

clude Berdellé’s octal digits based on their binary repre-

sentation, described in [5], and Lapointe’s hexadecimal

digits based the idea of drawing a line to join a sub-

set of four points [6]. In respect of alternative decimal

alphabets, a recent proposal uses hollow digit symbols

which allow for the concentric superposition of scaled

digits within a square, similar to a QR code [7], while

an idea from a century ago is an adaptation of tally

mark aggregation as used in systems like Babylonian

cuneiform [8]. Historically, another principle is seen in

the Attic Greek acrophonic symbols where the first let-

ter of the word for, e.g., “ten”, ∆ǫκα, is used as the

digit for that value [9]. The principle of Latin letters

chosen for modulo-10 morphological similarity to the

standard digits appears to be original to the author. It

is not surprising that the problem of a mnemonic basis

for base-X alphabets where X is greater than around

16 has not attracted much attention, given that general

use by humans would entail memorizing a large mul-

tiplication table, without much advantage over a lower

base such as 12.
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Structurally, a factored radix numeral system

FR(P, S) may be classified broadly as a non-standard

positional numeral system: it is positional in that the

contribution of each digit to a numeral’s value depends

on the position of the digit, but non-standard in that it

also depends on how many digits there are.

Arithmetic has been a major driver of structural nov-

elty in numeral systems, most obviously in the abandon-

ment of Roman numerals for the decimal place-value

system, and efficient arithmetic remains a key concern

where it is performed by a machine. An example of an-

other non-standard positional system, but one described

with hardware implementation in mind, is quote nota-

tion [10]. This is effectively an extension of the radix

complement concept combined with two repetition op-

erators allowing any rational number to be represented

in a finite number of digits. Its motivation is not only

precision but the simplification of division in particular.

A contrasting non-positional system, the residue

number system (RNS), represents an integer value by

the remainders resulting from its division by a set of

carefully chosen integers [11]. This modulo operation

in the conversion to RNS is a minor element in com-

mon with factored radix numbers (where the stem is the

decimal number modulo 10n). As with factored radix

numbers, the resulting representation frustrates sorting

and some arithmetic: for division, numbers are con-

verted back to standard positional form, and that reverse

conversion itself is not straightforward [12]. Where the

residue system is used, such compromises are accepted

because it allows efficient native addition and multipli-

cation of large integers, operations which can dominate

the arithmetic of applications such as cryptography.

A numeral system with similar specialized applica-

tion is the double-base number system [13]. This is

nominally akin to the factored radix system in that

it employs a kind of “two-dimensional” radix. How-

ever, it is based on the quite distinct principle of repre-

senting numbers as a sum of terms in the form pαqβ ,

where p and q are primes, e.g., with p = 2, q = 3,

127 = 2233 + 2132 + 2030. Again, this system and

multi-base generalizations of it [14] are designed for

computer arithmetic, not for human beings.

From the existing literature one might infer that any

non-standard system can be suited only to machines,

and that any worthwhile numeral system must support

facile native arithmetic for at least a specialized sub-

set of operations. The factored radix system is a novel

counterexample, being specialized instead to represen-

tation in a constrained context, where it is designed to

add to the economy of a higher number base a “decimal-

compatible” facility of interpretation.

10 Conclusion

The factored radix numeral system FR(P, S) has been

defined in a general way, but as a system specialized for

its representational properties rather than for arithmetic,

S is likely always to be 10 in practice and only P will

vary. Where P = 2, which may suffice in many con-

texts, the interpretation of a factored radix number has

been shown to be especially easy.

The utility of factored radix numbers, as motivated, is

predicated on a hard constraint on the number of avail-

able digits for representing a number, or at least on a

high cost to providing sufficient digits for a decimal rep-

resentation, whether in a physical context or a logical

one. Such a constraint can be expected rarely to oc-

cur in practice without the possibility of a workaround

other than an alternative numeral system. Even where

the solution must be in the numerals, the simple idea

of using a disjoint decimal alphabet to merely double

the range may suffice—in which case using the second

decade of one of the alphabets suggested above could

further improve that solution.

While the problem frame is narrow, within that frame

the factored radix numeral system has a marked advan-

tage over the alternative of representing values using

a higher base, not only in the ease of interpretation of

larger numbers afforded by its structural basis, but also

in the simple property of being a value-preserving su-

perset of decimal.

A Unix-style filter program to convert whole num-

bers between base S and FR(P, S) is available for ref-

erence and experimentation [15].
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