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Abstract

A simple specification method is introduced and the re-
sults of its application to a series of projects in Philips
are reported. The method is principally designed to
ensure that every unusual scenario is considered in
a systematic way. In practice, this has led to high-
quality specifications and accelerated product develop-
ment. While the straightforward tabular notation used
has proved readily understandable to non-technical per-
sonnel, it is also a formal method, producing a model
of system behaviour as a finite state machine. In this
respect, the notation is unusual in being designed to
preserve as far as possible a view of the overall system
state and how this changes. The notation also features
a constraint table which may be described as a kind of
spreadsheet for invariants to help define the states of the
system.

lightweight formal methods, finite state machines,
tabular notations, embedded systems, user interface
specification

1 Introduction

For some time, there has been an increased recogni-
tion that for formal methods to be adopted widely in
industry, they must be lightweight [1]: that is, spec-
ifiers should be able to enjoy formal method benefits
such as lack of ambiguity and amenability to automated
checks but without needing to learn arcane mathemati-
cal notations or subtle theoretical concepts. A success-
ful method must also be more than merely a notation; it
must support requirements specification as an activity.
Thus, Potts emphasizes the significance of systematic
methods for requirements elicitation over the mere in-
vention of languages to represent them [2], and Parnas
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observes that, “The industry badly needs methods that
will help inspectors to proceed systematically, carefully
considering all cases in a way that provides confidence
that nothing has been overlooked” [3].

Here, I describe a method which was first devel-
oped to specify the externally-visible behaviour of a CD
recorder and which is designed primarily to support this
kind of systematic elicitation. Further advantages in-
clude a notation that is easily understandable to the gen-
eral reader and which supports a naturally incremental
style of requirements definition leading to the creation
of a formal model of system behaviour as a finite state
machine (FSM).

The model produced by the method differs from most
FSM models in its decomposition and in its limited use
of structure. While much progress in software engineer-
ing has come from finding new structuring principles
and mechanisms, types of structure vary according to
their effectiveness in particular cases and are optimized
for different purposes. In the context of a requirements
specification in particular, there is some justification
for considering reduced or alternative kinds of structure
and the process by which a structured representation is
arrived at. For example, it has been observed that the
use of object-oriented methods can lead to information
which domain experts would keep together being dis-
tributed throughout a specification [4, 5]. Also, it may
be difficult to visualize a sequence of interactions for
a user interface when it has been specified as a set of
general rules, any of which may apply at any time [6].
Experimentally, subjects have found it more difficult
to read specifications in which modularizing informa-
tion led to lots of page-flipping; further, even though a
hierarchically-structured specification was judged eas-
ier to read than an equivalent flat specification, the sub-
jects had unknowingly made errors in reading it which
they did not make with the latter [7].

A significant distinction of the approach introduced
here is that it structures a finite state model of behaviour
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not as a network of single-variable FSMs but rather as
rules which show the change in state of many variables
at once. The tabular format used for this, called a tran-
sition table, is a refined version of one that has been
suggested before [8], however its application to a sub-
stantial industrial project has not previously been re-
ported. It should be emphasized that this decomposi-
tional approach differs not only from that of graphical
notations but also other FSM-based tabular notations
such as SCR [9]: it disposes of all communication be-
tween individual single-variable FSMs, effectively re-
placing them with a multi-variable FSM. This organi-
zation means that one does not need to work through
a sequence of internal events or a dependency network
to see the overall response of the system in a particular
case. Crucially, it means that one can take a systematic
approach to reviewing the overall behaviour rather than
merely that of the component FSMs considered sepa-
rately.

This alternative approach is obviously limited in scal-
ability. Later, I will outline how this was addressed in
practice through a compromise with conventional struc-
turing approaches. However, even in its simplest form,
it has been possible to apply the method to a non-trivial
system and to gain significant benefits from it.

As the method was originally developed to address
the exigencies of a particular project, it is convenient
to begin this article with the background to that project
and to explain how the method was designed to address
the problems that arose. Following this is an account of
the application of the method to the original system and
subsequently to related systems. I then outline and con-
trast comparable existing techniques before concluding
with a summary of the main results.

2 Industrial Background

The project which motivated the method and to which
it was first applied was the Philips CDR870, which was
to become the first audio separate compact disc recorder
(CDR) aimed at the consumer end of the market. The
key factor for the project was the short time available
for development: it was regarded as commercially es-
sential that the product be on the market by the follow-
ing Christmas. Meeting the schedule imposed by this
deadline and various lead times would define success
or failure.

The critical component for determining schedule fea-
sibility was the application-level software, which was

largely responsible for the behaviour of the system as
perceived at the user interface. Unlike the lower-level
software, this was to be developed from scratch and the
consensus among those who had worked previously on
systems of similar complexity was that this was not pos-
sible within the time available: about six months from
specification to integration.

Two people, including the author, representing a
Philips design house, felt that it was possible to develop
the software within the schedule. However, this would
depend crucially on having a very high quality specifi-
cation with almost no omissions or other defects. This
level of quality was needed because we could not af-
ford the cost in time of resolving issues discovered later
in the project lifecycle. Additionally, our estimates de-
pended on the preparation of a suite of automated re-
gression tests in parallel with the application code de-
velopment, with the personnel for this task working
largely independently, from the specification.

Specification of the user-visible behaviour therefore
began on a provisional basis, a final decision being de-
ferred until progress on this would allow a more reliable
assessment of feasibility. Because of the urgency of the
schedule, it was agreed to proceed more-or-less straight
to the construction of a formal model of the external be-
haviour, in co-operation with the person responsible for
deciding on the details of the user interface: as a finite
state machine model, the specification would be precise
and unambiguous, thus helping to fulfill our quality re-
quirement; it would also be essentially executable, thus
helping to reduce implementation effort.

The specification began well. For example, it was
easy to model the behaviour of the CDR’s tray as a finite
state machine which responded to the pressing of the
open/close button by changing from the “closed” state
to the “opening” state. However, for this example, there
is an exception: if the system happens to be recording
when the open/close button is pressed then the conven-
tion is to treat this as a mistake and ignore it (forcing
the user to press the stop button first). And, as more
functions were incorporated into the model, the num-
ber of unusual scenarios to be considered increased sub-
stantially, with many of them being easy to miss. Not
unusually for a system with a user interface, the com-
plexity of the CDR was therefore quite disproportionate
to its small size. Thus, it was possible to consider the
behaviour of individual components, like the tray, and
satisfy oneself that they were correct, only later to dis-
cover cases in which the overall system response was
incorrect.
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The main problem was the lack of any systematic
way to find these unusual scenarios, or corner cases.
Initially, we believed that diligent effort would reduce
the number of such cases that had been overlooked
to the very low level necessary. As specification pro-
gressed, however, there was diminishing confidence on
the part of the author in particular, as principal mod-
eler and “scribe”, that this point could be arrived at
quickly enough. Further, it would be difficult to know
that we had reached that level of quality – or when we
were likely to reach it – with the degree of certainty
one would wish in committing to a project with a hard
deadline and minimal margin for scheduling error.

Some other problems might in part be ascribed to
the particular notation used for the model, which was
Statecharts [10]. It was known from the outset that the
person deciding the details of the user interface would
have difficulty reviewing the statecharts. However, we
understood there would also be difficulties with other
notations based on the concept of communicating fi-
nite state machines. Given the pressing circumstances,
it was agreed that he would sign off on a specification
in this form trusting that it accurately modeled the be-
haviour discussed in the meetings. Nevertheless, this
was obviously not ideal for either party and negated
some of the advantages of having a formal specifica-
tion.

Since states may be organized hierarchically in State-
charts, the notation also permits a relatively high degree
of structuring. However, this was not an advantage dur-
ing the specification process as it was difficult to make
good structuring decisions while the behaviour was still
being elicited. For example, a decision to nest certain
other states within the “tray closed” state might initially
seem elegant but later prove awkward when trying to
incorporate other elements into the model. Weighing
such structuring decisions involved unwanted effort that
would be better deferred to a separate design activity;
changing any such decision additionally carried the risk
of introducing errors into the specification by failing to
preserve some correctly-modeled behaviour.

The ideal specification we sought would therefore:

• require the minimum of structuring consistent with
avoiding inefficiency, thus making it easy to record
the system behaviour incrementally as it was es-
tablished;

• be easy to understand without compromising on
the advantages of a formal, model-based descrip-
tion;

• above all, admit of a systematic approach so that
we could be sure we had overlooked no unusual
scenarios.

3 Basics of the Method

The approach eventually used to specify the CDR is
now described. This description is organized accord-
ing to the sections of the original specification and uses
modified extracts from that document as examples. The
key idea behind the method is this: Rather than con-
structing a model composed of separate elements inter-
acting as necessary to produce the desired overall be-
haviour and then simulating this model to verify its re-
sponse in some sample of cases, instead model the over-
all behaviour to begin with.

3.1 Variables

The specification begins with a list of the variables
defining the overall system state and their possible val-
ues, including an explanation of the semantics of any
variable or value where these are not self-evident. Fig-
ure 1 illustrates.

Figure 1: A CD recorder variable.

Mode

The mode is the requested mode. For exam-
ple, if the play key is pressed when the Tray
is open then Mode becomes play and Tray be-
comes closing – but the CD will not be played
until the tray finishes closing.

play
pause
stop
record

3.2 Constraints

The next section is concerned with defining the possible
states of the system, that is, which combinations of vari-
able values are possible. For example, if Tray is open
then Mode cannot be anything other than stop. Such a
constraint, or invariant, may be expressed in a constraint
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table, a novel notational element shown in Table 1. In
the constraint table, the single shaded cell in each row
may be thought of as the “if” part of a set of “if - then”
statements, with the other cells in the same row giving
the “then” parts. Thus, the two cells shown from the
first row of the table indicate that if Tray is open then
Mode must be stop. Similarly, from the row in which
play is shaded, we read that whenever Mode is play,
Tray must be either closed (with the CD being played)
or closing (in order to play it). The symbol ‘*’ means
“don’t care.” For example, if Tray is closed then the ta-
ble tells us we cannot infer anything about the value of
Mode.

Table 1: Constraint table for CD recorder.

Tray Mode (other variables . . . )
open stop . . .
opening stop
closing play

pause
stop

closed *
* stop
closing play
closed
closing pause
closed
closed record
. . .

The shading progresses diagonally down the con-
straint table with each variable value appearing in ex-
actly one shaded cell. Note that the contents of cells
below the diagonal could be derived from those above
it or vice versa. However, this redundancy allows easy
reference: one may see the effect of a variable having a
particular value simply by finding the cell in which that
value is shaded and looking across the same row of the
table.

Obviously, the format provides for the systematic
identification and representation only of simple, or
“two-dimensional,” constraints, that is, those involving
only two variables. In the case of the CDR870, analy-
sis using software developed subsequent to the project
helped later to uncover a few applicable constraints that
cannot be represented in this way, hereafter called com-
plex constraints. Although none was included in the

original specification, a complex constraint may in gen-
eral be listed separately from the table using a formula,
together with an explanation.

3.3 Events

The Events section of the specification simply lists ev-
ery event to which the system responds, i.e., anything
which may cause the system to change state. Figure 2
shows some of the events from the CD recorder specifi-
cation.

Figure 2: Events for CD recorder.

KEY OPEN CLOSE

The “open/close” button is pressed on
the front panel or on the remote control.

EV TRAY CLOSED

The (closing) CD tray reaches the fully
closed position.

EV END TRACK

While playing a CD, the end of the cur-
rent track (song) is reached.

EV FAST SEARCH TIMEOUT

The “fast” button has been depressed
continuously for two seconds.

3.4 Rules

The core of the specification describes the behaviour
of the system through a comprehensive set of transition
rules. Each rule specifies the response of the system to
one of the events for some set of states. The rules are
described in a transition table as illustrated by Table 2.

The first rule in this table (with identifier r1 1) spec-
ifies what happens when the “open/close” button is
pressed and Tray is either closed or closing and Mode
is either stop, pause or play: in all of these cases, Tray
changes to opening and Mode changes to stop. The fol-
lowing rules illustrate the use of the “no change” (‘=’)
symbol. These appear in the target row of the rule; the
row above this is called the source row.
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Table 2: Transition table for CD recorder.

Tray Mode . . .
KEY OPEN CLOSE r1 1
closed stop
closing pause

play
opening stop
KEY OPEN CLOSE r1 2
open stop
opening
closing =
. . .
EV TRAY CLOSED r2 1
closing *
closed =
. . .

The rules for each event explicitly show the be-
haviour in every possible state: those cases in which
there is no response are recorded using rules with target
rows containing only “no change” symbols.

However, not all events are possible in all states, e.g.,
a “tray closed” event clearly cannot occur if the tray
is already closed. Such facts can be expressed using
event-related constraints. For the CDR specification,
these constraints were self-evident and were omitted.
Whether obvious or not, one would typically record
such constraints anyway, if only to avoid spurious er-
rors from automated checks; however, no software to
perform such checks was available at the time.

Textual notes added to the CDR rules were useful for
reminders, explanations, or simply to describe parts of
the behaviour which could not be represented as a finite
state machine. For example, the note shown in Table 3
describes both a pre-condition and a postcondition with
respect to the “program”, that is, a sequence of tracks
selected by the user for playback (called “memory” on
some CD players).

Note also the variable called Program in Table 3.
This partially models the state of the programmed se-
quence of tracks using the values empty, entered, and
maximum to capture the main equivalence classes, i.e.,
whether there is a program and if there is whether it has
room for any more tracks in it. Abstracting significant
non-finite state aspects in this way was designed to give
these elements equal prominence and ensure that no un-

Table 3: Rule with non-finite state element.

Tray Mode . . . Program . . .
KEY DIGIT r7 36
closed program empty

entered
= = entered

maximum
The digit pressed could not be the first digit of a
two-digit track number on the disc but corresponds
to a single digit track number on the disc.
It is appended to the program.

usual cases involving them were overlooked.
Notes added to the CDR rules were also useful in

the relatively rare cases where using the tabular format
alone for finite state aspects would have led to inef-
ficient, repetitive rules. For instance, for those cases
in which the “repeat” setting should toggle, the appro-
priate table cell indicates that its next value is non-
deterministic (like that of the Program variable in Ta-
ble 3); however, the note

Repeat toggles in the following sequence...

restores the missing information in a way that reduces
the number of rules required. Although the problem
didn’t really arise for the CDR, a similar strategy ad-
dresses more general cases in which sticking to the con-
junctive normal form of the tables would cause a geo-
metric increase in the number of rules. Formulas may
also be used rather than natural language.

3.5 Display

The specification ends with a description of the contents
of the display on the front panel of the CDR as a func-
tion of the system state. The format of this is similar
to that of the transition table, but with the target rows
replaced by a desciption of the display output. In effect,
this is simply a kind of decision table. Table 4 illus-
trates.
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Table 4: Condition table for CDR display.

Tray Mode . . .
open *
opening
“OPEN”
closed play

pause
The track number and the elapsed track time, e.g.
“3 1:10”.

4 Results and Discussion

4.1 Initial Results

Completed, the original CDR specification uses 16 state
variables, the values of which allow for almost 10

9 sys-
tem states; however, taking the constraints into account,
fewer than 400,000 of these states are possible in the
model. The system behaviour is defined in response to
50 different events using a total of 365 transition rules.

The method proved completely successful in eliciting
the unusual scenarios that needed to be considered: Ev-
ery possible combination of event and system state had
to be covered by some rule and filling in all of the cells
in the tables ensured that no dependency or detail of
the response was overlooked. Whenever a new variable
was added to the model, a new column of empty cells
was created in existing rules, serving as a reminder of
the potential dependencies or changes that remained to
be considered as a result of the addition.

Specification also proceeded incrementally at a
steady pace. The effort of deciding how best to incor-
porate new elements into the model was disposed of: as
each new aspect of the behaviour became known, a new
rule was created; completing it simply entailed filling
in the table cells for that rule. Because each rule was
essentially self-contained, showing one overall system
response independent of the other rules, there was never
a danger of inadvertently affecting behaviour already
modeled.

In terms of process, there were other advantages too.
A rule could be added for any event at any time, as could
a variable, thus supporting the random way in which in-
formation could become available during specification.
However, in practice, priority was given to completing
the rules for each event in turn: this provided focus in

terms of what to do next, meant similar rules tended to
be considered around the same time, and made it rela-
tively easy to judge progress and how much remained
to be done.

From the customer’s viewpoint, the tabular format
proved immediately understandable to the user interface
expert. Further, at a meeting to decide on whether to
proceed with the project, the other main customer rep-
resentative in the specification process said that he now
believed that the project could be done within the sched-
ule – and he identified the specification, although then
still incomplete, as the reason for his change of mind.

A specification should be organized as a reference
document rather than an introductory narrative about
the system: though it is more difficult to browse, it is
better in the long run as the information is in a form
that allows easy reference throughout the project [11].
In the case of the CDR specification, one could confirm
the response for any case simply by turning to the pages
for the appropriate event and finding the applicable rule.
As a comprehensive and detailed oracle, it reduced the
danger of spurious problem reports from integration
testers and it forestalled potentially time-consuming ar-
guments on the details of the system behaviour (a par-
ticular problem for user interfaces, where everyone has
an opinion): not only did it unambiguously state the re-
quired response, its explicit form helped to confirm this
was not an unforeseen accident of implication; in effect,
it declared, “Yes, this specific case was considered and
this is what was decided.”

The organization of the specification also allowed re-
gression tests to be prepared with a minimum of addi-
tional documentation: to ensure broad coverage, tests
were associated with all of the rules; each test refer-
enced the rule it was principally designed to exercise
through its unique identifier in the specification.

However, in addition to the main specification, it
was useful to have an introductory narrative, called the
User Requirements Specification (URS). This was a
function-oriented document written in natural language
by the customer, a little closer in style and organiza-
tion to a user’s manual – however, unlike the specifi-
cations described in [12], it was not in fact designed
for this purpose and contained technical notes on is-
sues such as ensuring recorded CDs complied with CD
standards.1 For the URS, no particular effort needed
to be made to avoid ambiguities or identify exceptions:

1For later projects, the equivalent document was called the Cus-
tomer Requirements Specification.
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it was understood that the tabular specification would
have precedence in case of any conflict. The two docu-
ments served complementary purposes: while the main
specification answered every possible “what if” ques-
tion, anyone unfamiliar with the system would find it
much easier to discover the answer to a “how to” ques-
tion from the URS; besides, a prior knowledge of the
system functionality in broad terms was assumed in the
tabular specification.

The organization of the specification into indepen-
dent specific rules proved also to have another minor
disadvantage. During the design phase, for which there
was a return to the use of Statecharts, it was found
difficult in a few instances to model the specified be-
haviour because it was “inconsistent”– not in the formal
or mathematical sense of transition rules contradicting
each other, but rather insofar as different responses were
sometimes specified in cases which were somehow sim-
ilar. Apart from being undesirable in itself, this made
the behaviour difficult to model in an elegant way: In
effect, the approach could be said to have allowed too
much flexibility – so that it was hard to generate a spe-
cific response using the same synthesis of more general
rules that would successfully reproduce the rest of the
specified behaviour.

In general, these incongruent transition rules had
arisen in cases where more than one possible response
was acceptable and, in the absence of a particular pref-
erence, one had been selected more-or-less arbitrarily.
Change requests were raised for these cases and these
were approved immediately by the customer. The prob-
lem thus had no material impact on the schedule, with
the number of rules concerned also being small. How-
ever, it does show how, compared to a model made up of
general rules, a model decomposed into specific cases
changes the cognitive load on the user: the former em-
phasizes general rules at the expense of hiding their im-
plications in specific instances; the latter shows the spe-
cific cases, but obliges the user to remember guiding
principles consistent with existing rules that might be
applied to other cases.

The only major difficulty with the CDR specification
was checking it manually for consistency and, espe-
cially, completeness. Though its form afforded a sys-
tematic approach, to ensure that the rules for each event
covered all possible cases was in practice a tedious and
mentally draining task. This of course was not a diffi-
culty inherent in the method but rather a consequence
of having no tool support at the time.

Unsurprisingly, there are several errors in the speci-

fication which software now available helps to uncover.
First, the constraint table contains a few constraints that
are too strong, either becuase of the careless omission
of a value from a list of values in a constrained (i.e., un-
shaded) cell or because an “almost true” constraint does
not, in fact, always apply. These mistakes are reason-
ably obvious once revealed and did not transfer to the
implementation. As mentioned earlier, there are also
several applicable complex constraints missing from the
specification. While the constraint table is not designed
to elicit constraints that cannot be represented in it, nei-
ther is it essential to the method that all appicable con-
straints be identified: the worst case consequence of
an omitted constraint is that an automated consistency
check fails to reveal an error elsewhere, that is, a tran-
sition rule which makes reachable a state that should be
impossible.

An error of this last kind in a transition rule of the
CDR specification may be instructive. In the rule, a
variable which is “no change” should actually change
to a specific value. Unfortunately, a displayed message
obscures any visible effect of this change until a subse-
quent rule is applied, the effect of which is to progress
an operation begun in the first rule. In fact, the modeled
behaviour would also be correct if the variable changed
in the second rule instead; it is simply that the latter con-
vention would “fit” less well with the rest of the model;
indeed, it seems the error may have arisen in chang-
ing this convention during modeling and failing to up-
date all the affected rules. Why might such an error in
the specification not be revealed in tests for these rules,
especially if the test for each rule exercised transitions
from the other rule also? Actually, had the error been
reproduced in the implementation, it would have been
found in these tests, since the visible system state would
be obviously incorrect after both rules were traversed:
the expected output for the tests was correct because,
in constructing a test for a rule, one would naturally
tend to refer to other rules only to check some point of
uncertainty, not to confirm behaviour one knows to be
correct. This was a rare case where, in inspecting each
rule, it was not enough to know the broader system be-
haviour; one needed also to examine the detail of the
other rule in proximity to it to realize that a change that
might have happened in either rule was not happening
at all.

Mistakes like this, and some less interesting ones,
show that even careful application of a systematic, ex-
plicitly comprehensive approach cannot in itself elimi-
nate human error arising from time pressure, boredom,
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or distractions. That said, the errors in the CDR spec-
ification seem all to be “obvious” ones, none of which
affected the software itself. Also, with the tool support
now available, these mistakes would have been detected
at the time. However, there can in general be no guaran-
tee that an error in a model will cause it to be internally
inconsistent or formally incomplete; and even an “obvi-
ous” error could transfer to an implementation through
automatically-generated code. Ultimately, the only way
to be absolutely sure of a perfect specification is to get
a perfect specifier to write it.

In spite of having to check specification complete-
ness and consistency manually, the approach taken to
specify the CDR fulfilled everything required of it, both
in terms of the end result and the relative efficiency of
the process by which it was arrived at. The application
code was eventually delivered on schedule, as was the
final system. This was largely attributable to the very
high quality of the specification, which had been iden-
tified at the outset as critical to the project’s success.

4.2 Subsequent Projects

The commercial success of the CDR870 led to the de-
velopment of other CDRs with more than one tray and
substantially extended functionality. Some of these
eclipsed the original both in terms of perceived com-
plexity and according to more objective measures: to a
good approximation, the first major variation was dou-
ble the size of the original, both in terms of specifica-
tion page count and lines of code; these figures dou-
bled again with the next major addition of functional-
ity. Though the author had no involvement in specify-
ing these later systems, the tabular approach continued
to be used. However, it was adapted (as outlined later)
to make it more scalable.

While there was some turnover of personnel, expe-
rience with the approach on subsequent systems was
broadly consistent with that on the first. Although it was
described as requiring a “massive” effort initially, the
detail and completeness of the resulting specifications
were highly valued. In a document, one project leader
credited the method with various benefits, including
allowing improved estimation and preventing the im-
plementation phase from becoming an iterative process
of issue resolution which would be “much more time-
consuming” and “very difficult to control.” It was ap-
preciated for similar reasons by the engineers working
directly with it, one of whom, for example, described

the specification as a very “safe” document from a con-
tractual point of view.

The process by which the specifications actually got
written was, as with the original system, one of periods
of writing interspersed with meetings with whomever
was responsible for deciding on the system behaviour.
On one project, for example, these were daily two-hour
meetings. In these sessions, any issues that had been
elicited by modeling the behaviour using the method
would be described in the form of mainly verbally-
expressed scenarios, together with the best options the
engineers had identified and the implications of each
one. It was always easy for anyone familiar with the
broad functionality of the system to move from a rule
to a scenario in which some aspects of the system state
might be replaced by preceding events, for example,
“Suppose the tray is closed and the user presses the play
button and then, before the beginning of the first track
is found, the user presses...” A customer representative
also referred to the original CDR870 specification as the
“Use Cases”; a name which gained general currency for
all the projects.

The importance of the constraint table was confirmed
by accident in the first of these projects. The two engi-
neers using the approach, to which the author had left
no written method guidance, decided to work first only
on the transition rules, planning to return later to the
constraint table which they regarded as less important.
This seemed to cause certain difficulties which led their
project leader to suggest they give the constraint table
priority. This resolved the problem and it was sub-
sequently apparent to them that their original strategy
“didn’t really make sense” and that, without doing the
constraint table, “you wouldn’t have thought about [the
system] properly.”

The author’s original motivation for the constraint ta-
ble was partly to help to emphasize the semantics of the
variables. Seeing, e.g., that it is possible for Mode to
have the value play when Tray is closing makes it more
obvious that Mode does not necessarily reflect the cur-
rent system activity, but rather the selected one.

More importantly, the constraint table records in one
place choices about the states which affect the be-
haviour. For example, one might decide that Repeat
must be no repeat whenever the tray was open. This
would mean that, in a transition in which the tray opens,
the variable Repeat would have to be reset; it would also
imply that there could be no response to an attempt to
toggle this setting while the tray was open. Conversely,
if this fact were not recorded in the constraint table then
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it would make it hard to see whether the transition table
was complete: if there are no rules for states in which
the tray is open and Repeat is, e.g., repeat track then
completeness depends on whether these states are in
fact reachable from the initial power-on state. Besides
being extremely difficult to determine manually from
the many rules, the set of reachable states is necessarily
dynamic and incorrect as long as the specification is in-
complete, as well as being quite sensitive to any mistake
in the rules.

This was the reason for the difficulty described ear-
lier. The underlying principle is simply this: one must
consider what the possible states of the system are be-
fore attempting to define the transitions between them.
This is naturally enforced by other notations such as
state transition diagrams – at least at the level at which
the states and transitions are represented, i.e., the single-
variable FSM. Of course, it is possible, indeed likely,
that one may decide to change the constraints in light of
issues which arise in the course of completing the tran-
sition table. This is not a problem; the important thing
is to have a starting point and a working record of the
static part of the model.

One engineer also remarked that he would like to
have been able to include complex constraints in the
constraint table. While it would be nice to have a
systematic way to identify all constraints, rather just
those involving pairs of variables, this does not seem
to have been a significant issue. Although this may
vary depending on the system, experience with the CDR
projects would seem to suggest that complex constraints
will typically comprise a relatively small proportion of
the total. Further, by their nature they are weak in com-
parison to the two-variable constraints in the table, and
so they are responsible for excluding an even smaller
proportion of states from the set of those which are per-
mitted.

Another problem was a degree of inertia observed by
a project leader in getting started on writing the specifi-
cation. This was a bit surprising, given that the method
is designed to allow a naturally incremental approach
by the progressive addition of variables and rules. In
part, this may have been caused by a relative lack of sta-
bility in the desired functionality. However, a reported
issue involved choosing variables. While variables like
Repeat may be easy and obvious choices, sometimes a
certain amount of judgment is needed to best explain
the observable states without unnecessary technical de-
tail. For example, to model the inevitable delay between
pressing the play button and playback commencing, the

CDR specifications abstracted the system’s internal ac-
tivity simply by giving a variable the value “searching”.

Also, though it may not be obvious from a finished
specification, there is occasionally a choice between us-
ing one variable or two to model some aspects of the
system state. One choice leads to additional columns
while the other, depending on the details of the be-
haviour, may make additional rules necessary (the op-
portunities for using “no change” being reduced). The
problem is that reversing such a choice later can mean
a lot of work in manually changing rules. This issue
did not really arise on the first project partly because
the knowledge gained in the initial attempt to model
the system using Statecharts meant that there was, in
effect, a good deal of foresight. For example, an argu-
ment could be made for combining Tray and Mode into
a single variable – and this argument is stronger if one
is not initially aware that pressing “play” when the tray
is open causes the system to enter a “closing in order to
play” state.

Choosing a good set of variables is of course an un-
avoidable part of any modeling approach of this kind
and one that can benefit not only from skill and expe-
rience but also from hindsight; the difference with the
transition table format is the high cost of changing one’s
choice of variables. It seems therefore that the best ap-
proach to this difficulty is to try to make the task of
refactoring easier through software support.

Overall, the positive attitude to the notation among
its users was remarkable considering the increased dif-
ficulty of manually checking the specifications for com-
pleteness – a task already a little daunting for the orig-
inal system. The general feeling seemed to be that the
value of the approach in ensuring that everything was
thought of at the specification phase justified the heroic
effort of the manual checks made necessary by the con-
tinued absence of tool support. However, as the size
of the specifications grew to many hundreds of pages
there was a recognition that this could not be sustained
for larger systems, even with the adaptations described
below.

4.3 Improving Scalability

Clearly, there are physical limits to a naive application
of the approach: in particular, the width of the tables
is restricted by the width of the page on which they
must be printed. Where this limit is reached, the re-
introduction of structure into the specification becomes
a practical necessity. To illustrate how this was man-
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aged in practice, we can consider a dual-tray CDR, that
is, a CDR in which one tray – or loader2 – has play-
back functionality only and the other may be used for
playback or recording.

The engineers working on the first such project ad-
dressed the problem by specifying the behaviour of
each loader in a separate transition table. Thus, each
loader is modeled as a separate FSM. Functionality
which spans loaders, for example, synchronized record-
ing from one CD to another, is modeled with the help of
commands (in effect, internal events) passed from one
loader to the other, the responses to which are specified
in the same way as those to external events.

This strategy may be seen as a compromise in which
the familiar model of communicating FSMs is used as
a higher-level structuring primitive for multi-variable
FSMs specified using tables. Additionally, since the
two loaders share a good deal of functionality, it was
possible to put common responses in a third transition
table, leaving only the behaviour unique to each loader
in the two loader-specific tables – which may thus be
seen as inheriting the behaviour of a notional basic CD
player.

In fact, the structure used in the dual-tray CDR spec-
ifications is a little more subtle than merely communi-
cating FSMs and inheritance. In particular, it was con-
venient to make some state information common to the
tables for both loaders where the response of each de-
pended on it – in effect, shared variables. It is interest-
ing therefore to note the possibilities of using the natural
join operator of relational algebra as a formal basis for
structuring [13] (a similar idea with a different motiva-
tion is described in [14]).

On the first dual-tray CDR, the two loaders operated
fairly independently and engineers were happy with the
results of their approach. However, the functionality
which spanned loaders grew on a later project so that
there was more coupling between them. The structure,
while obviously necessary, became less desirable. The
behaviour was described as being more difficult to con-
ceptualize and not as well “connected” as it would be
in a single table. Compared to one big table, internal
events were “subtle,” more appropriate for the imple-
mentation. One engineer described the problem simply
as having to look at more than one part of the specifica-
tion to see the overall response.

These comments at least are further evidence that the

2Strictly, the word ‘tray’ was used for the physical tray only, not
the associated functionality.

underlying, unstructured approach of the method is a
cognitively desirable one. This is also consistent with
the difficulties complained of by users of Statecharts
who wanted to know “the state of the whole system at
once” [15] – exactly the view presented by the tabular
notation in its basic form and that which the engineers
wished as far as possible to preserve. It is possible that
the problem could be alleviated by software, for exam-
ple, by using multiple windows to show rules from dif-
ferent tables simultaneously.

While the introduction of structure made larger mod-
els tractable, the intimidating size of these later specifi-
cations became an issue for at least some customer rep-
resentatives, who changed between projects, with one
reportedly expressing the opinion that the tabular spec-
ification should be for the engineers only. Prototyping
is one option that could help address such a difficulty –
one which would also allow early usability evaluation,
with the specification itself being simulated through a
mock-up of the user interface; in the context of incre-
mental specification, one can imagine a message “re-
sponse not yet defined for this case” appearing for ab-
sent transition rules. Alternatively, one might deliver
to stakeholders a document condensed from the tabular
specification, including in it the more illuminating sce-
narios which were elicited. In either case, the detailed
behaviour of the system would still be considered sys-
tematically by the specifiers who would raise and dis-
cuss any unusual scenarios with stakeholders during the
specification process, even if the latter chose to give fi-
nal approval on the basis of a tested or described sample
of behaviour rather than a thorough review of the com-
plete model.

5 Comparisons

The format of the transition table is similar to that de-
scribed by Monk and Curry [8] as a tabular interface
to Olsen’s Propositional Production System (PPS) [16].
This is also FSM-based and the potential for using auto-
mated analysis to determine certain dynamic properties
[17] has been explored and related to existing model
checking technology [18]. A spreadsheet-based tool,
called the Action Simulator, was created which allows
a model to be executed – though this is demonstrational
and somewhat limited by the possibilities afforded by
spreadsheet macros. The basic approach has been ex-
ercised on a number of case studies but has remained
relatively undeveloped.
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Some notational differences are worth mentioning.
Whereas the transition table format allows table cells
to contain lists of variable values, in PPS and its tabu-
lar equivalent only a single value or an implicit “don’t
care” is possible. The increase in expressive power of
being able to specify sets of states in the conjunctive
normal form of the transition table is quite significant:
for the CDR specifications, the number of rules oth-
erwise required would have been many times greater,
making Action Simulator-style tables practically unus-
able even for the original CDR870. On a more minor
point, blanks are used to indicate “don’t care” and “no
change.” Empty cells were also originally used on the
CDR projects, though only on the target rows, i.e., to
represent “no change” (the extracts above are modified
ones); however, it seems better to be able to distinguish
cells which are empty merely due to an interruption or
an open question from “no change” cells.

The motivation for this research is quite different
from that applying in the work described here. A pri-
mary concern is the usability of the system being speci-
fied and the possibilities for simulation and prototyping;
model checking is used to evaluate such interaction-
related properties as the number of steps needed to
move from one state to another. In contrast to this work,
explicit completeness and the systematic discovery of
corner cases is not addressed or identified as an issue.
Indeed, the semantics are inconsistent with such a task:
the absence of a rule for a particular state-event combi-
nation implicitly means that the associated action is not
possible in that state. (This is not the only semantic dif-
ference: Olsen also defines a priority ordering for rules
in order to support an inheritance mechanism [16]; this
author prefers semantics which allow each rule to be re-
viewed individually without having to take into account
those following it – of which there may be many.) That
nothing analogous to the constraint table was produced
by this research can therefore be explained by the dif-
fering perspective and objectives as well as the lack of
significant industrial application.

SCR [9] is another tabular approach which originated
in an effort to improve the specification of an indus-
trial system. It has the advantage of being relatively
mature, with good tool support. An SCR specification
is based on the Four-Variable Model [19] whereby re-
quirements are documented by describing the variables
which are monitored by the system, those which are
controlled, and the relation required to exist between
them. In SCR, this relation is expressed using tables,
each of which describes how the value of a variable is

derived in terms of other variables, which may also be
internal variables. Variables may be FSMs and numeric
variables are also permitted. The tables, which come in
a variety of formats, may include not just lists of values
but also expressions to indicate the calculation of the
new value of a variable in different circumstances. SCR
is output-driven in organization: given any controlled
variable, one may work back through the specification
to the monitored variables to see how its value is deter-
mined in all cases.

The method presented here differs in several respects
from SCR. Though the Four-Variable Model is a gen-
eral one, conforming to it for the CDR specifications
would have meant defining the hardware and software
interfaces in unnecessary and unwanted detail. For the
tray, for example, one would have been concerned with
how it was detected when the tray had closed, the ac-
tivation of the motor used to open or close it, and so
on. Even had this hardware not already existed, these
interfaces would not have been a concern for the spec-
ifications described above; including them would also
have made the document much more intimidating to a
non-technical reader unconcerned with lasers, sensors,
relays, rotational velocities and so on. For the CDRs,
variables like Tray instead show the externally-visible
response simply as a change in state at an appropriate
level of abstraction. This is not to suggest that the Four-
Variable Model is not suitable or effective in many in-
stances. However, it seems likely to be less applicable
where a rigorous treatment of the interface between the
system and the world is inappropriate and the main goal
is to describe user-perceptible behaviour in an accessi-
ble way.

SCR supports also the formal inclusion of numeric
variables, which is especially useful for systems such
as factory process control and aerospace, where vari-
ables like temperature and altitude may dominate in a
description of the overall behaviour. In this respect, it is
certainly more expressive than the notation introduced
here. However, all effective notations have boundaries:
SCR, for example, also is not suited to modeling more
complex variables such as the sequence of tracks pro-
grammed to be played from a CD; and the specifica-
tions for the CDRs coped well with this boundary by
the pragmatic and flexible device of adding descriptive
notes to rules where necessary. One can also envision
a more formal description of operations on non-finite
state variables being attached to transition rules; for
the CDRs, these aspects were relatively simple and the
main objective was not to describe every detail of the
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system with mathematical rigour but rather to ensure
that nothing was overlooked.

Nevertheless, the notation is clearly more specialized
than SCR and most others. While one may incorporate
non-finite state aspects into the transition rules as de-
scribed above, the advantages of the approach depend
on the behaviour being substantially amenable to de-
scription as a finite state machine. If a system’s be-
haviour is dominated by numeric or algorithmic ele-
ments then it would obviously be better to use another
notation in the first place.

A more fundamental difference with respect to both
SCR and other methods is specification structure and
organization. Mainstream approaches based on the
FSM model employ a decomposition into communicat-
ing FSMs, albeit with a varying or additional structur-
ing mechanisms. In SCR, a network of dependencies
defines a cycle-free order of evaluation; this is also true
of SpecTRM-RL [20], another output-driven, mainly
tabular approach designed for process control systems,
and a successor to an earlier graphical/tabular approach
called RSML [21]. In Real-Time Structured Analysis
/ Structured Design (RTSA/SD or SA/RT) methodolo-
gies [22, 23], FSMs communicate using internal events
and are arranged into a hierarchy, the levels of which
show the directed communication between either in-
dividual FSMs or lower level groups of FSMs. The
Statecharts notation also allows directed communica-
tion between FSMs at higher levels but within blocks
adds the concept of a hierarchy of states: separate FSMs
can appear as “orthogonal components” within states;
these may have an indefinite existence where they ap-
pear immediately within the single top-level state, or
in effect be instantiated on entry to a lower level state.
This application of hierarchy being somewhat incom-
patible with directed communication, broadcast events
are used. In SDL (e.g., [24]), FSM-based processes
may be grouped into blocks in a manner similar to
RTSA/SD with directed communication including a se-
mantics of event queueing; object-oriented structuring
concepts are also available.

Despite their variety, all the usual approaches share
a decomposition into single-variable FSMs, each show-
ing the behaviour of a small part of the system at all
times. In contrast, the approach dsecribed here, like
the Action Simulator tables, decomposes the behaviour
into rules, each showing the response of the whole sys-
tem in some explicit set of cases. One advantage of
this is simplicity: non-technical readers are able to see
the system response directly, without having to under-

stand structural elements such as internal events or to
trace dependencies. It also means the desired overall
behaviour is recorded incrementally rule by rule, re-
moving any effort of constructing or modifying a model
of interacting FSMs to produce the same effect. Most
importantly, whereas the overall behaviour is normally
seen only through the sample-based windows of test-
ing, simulation and scenarios, the tabular format used
to specify the CDRs allowed systematic review of the
whole-system response in every possible system state.

Of course, a lack of scalability is a negative con-
sequence of discarding the kind of structure used in
other FSM-based notations. While the approach in its
raw form was adequate to model the original CDR sys-
tem, for larger systems one must inevitably re-introduce
structuring primitives. Since one is then no longer see-
ing or considering the state of the whole system at once,
this obviously entails compromising to some degree the
advantages of the method in its basic form. As seen
with later CDRs, the effectiveness of the approach in
a particular system will then inevitably depend to some
degree on how well it can be decomposed into relatively
independent parts.

The constraint table is novel both as a process and a
notational element. Typically, invariants are defined in
a relatively ad-hoc way when using a model checker to
check a completed FSM model; the model is progres-
sively corrected and the invariants strengthened as nec-
essary until verified. The constraint table, in contrast,
is designed to systematically circumscribe the states of
the system as part the modeling process. While this is
necessary for a notation requiring one to consider all
possibilities, it also makes it possible to check that each
rule does not allow a state not permitted by the con-
straints to be reached from one that is – and this check
can be carried out independently on each rule as it is de-
fined, before the model is complete. As a kind of logical
spreadsheet, the constraint table format is easier to read
and works better as a reference than an equivalent list of
formulas; nothing is lost by having to keep as formulas
those constraints that cannot be represented in the table,
especially where these are relatively few in number.

6 Conclusions

Apart from the specific method, this work also con-
tributes to a growing body of reports on the successful
application of formal methods in practice. In this re-
spect, it is worth noting that the principal motivation for

12



using a formal method of specification was to develop
a product as quickly as possible. Outside of critical do-
mains like aviation, the industrial adoption of formal
methods is likely to be advanced by an increased em-
phasis on such obvious commercial benefits as reduced
time-to-market.

The most important advantage of the method itself is
the systematic elicitation of unusual scenarios, which,
for the CDR projects, proved invaluable. With other
notations, mathematical completeness is in general no
indication that one has thought of everything; how-
ever, with the tabular notation, correctness tends to fol-
low naturally from model completeness. In effect, the
method creates a formal and complete model of system
behaviour but one that is comparable to a description
based on sequential scenarios, in that the model shows
the response of the whole system at once, and does this
in an equally immediate, straightforward way which re-
liably captures the intentions of the specifier.

It is also very much an incremental method, allow-
ing new information to be incorporated in the appro-
priate place as it becomes available, progress and re-
maining work to be easily assessed, and correctness
to be built in as part of the specification process. In
this respect, it works because of the organization of
the specification and the comparative lack of structure
in the model: while the benefits of structure are well-
understood, the primary concern at specification is how
information may be recorded in an efficient way that
avoids error.

In its basic form, the method seems to satisfy the
objectives of simplicity and formality emphasised by,
for example, Wieringa, who recommends defining “the
simplest technique possible that still is of use”, noting
that a “simple core notation could be incrementally ex-
tended to suit the needs of the specifier” [25]. For the
later CDR projects described above, this is essentially
what happened when the engineers themselves incorpo-
rated structuring concepts from other approaches, with-
out direction from the author. Nevertheless, making the
method more suitable for larger systems requires further
work in adapting and formalizing the kind of structuring
techniques that seem best suited to it, while, in apply-
ing the method, the challenge is to introduce structure
in such a way that the tabular components chosen are
those for which the format will provide most benefit.

Despite its limitations, the method is one which
has already proven practical and effective in producing
high-quality, understandable specifications and short-
ening the development lifecycle. Its principal domain

of applicability would appear to be embedded interac-
tive systems with substantial finite-state aspects, that is,
systems likely to manifest the same kind of complexity
as the CDRs described above. In critical domains, the
value of a specification method designed to ensure that
no exceptional cases are overlooked would obviously
assume greater significance. A user guide to the no-
tation has been written and a supporting software tool,
called Statestep, is also available [26].
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