
Statecharts: Some Critical Observations

Michael Breen

last updated 2004-8-5

Abstract

A critical analysis of statecharts is presented, mo-
tivated by difficulties observed in practice by the
author and supported by examples. Particular at-
tention is paid to the possible uses of hierarchy and
their effects. Despite the notation’s popularity, the
observations indicate fundamental problems with
using statecharts for specification.

1 Introduction

Since the statecharts notation [3] was introduced it
has proved a popular success, being widely used by
practitioners, analysed by academics, and incorpo-
rated into other languages. Occasionally, problems
with the notation are pointed out but often these
have been of more interest to theorists who wish
to modify the semantics than to practitioners. In
particular, the notion of hierarchically structuring
states has been largely uncriticized.

What follows is intended to be a critique of stat-
echarts from a user’s point of view; where some of
the points might seem somewhat theoretical, ex-
amples are used to show their practical implica-
tions. Though these examples are mainly taken
from Harel’s original paper, the observations they
illustrate derive principally from the author’s own
experience with statecharts and other approaches
based on the finite state machine model. The focus
here is on the use of statecharts for specification as
opposed to design, though some points are relevant
to both contexts.

2 Uses of Hierarchy

Stateharts differ from other notations mainly in the
concept of a hierarchy of states. States may be
grouped into superstates for a variety of reasons.
I identify five distinct purposes and consider each
in turn.

Clustering

One reason to use hierarchy is to reduce the num-
ber of transitions required on the diagram: A single
transition drawn from a superstate to a target state
can replace transitions from each of the substates
to the same target state. Not only does this reduce
repetition, it also reduces the amount of clutter in
the diagrams. This can be very useful even for a
small number of states especially when the label
on each transition is relatively long.

There is also the potential to allow shorter tran-
sition labels where transitions in one component
are dependent on the state of another: If a transi-
tion has a condition of the form “in state1 OR in
state2 OR in state3” and these states are grouped
into a superstate then the condition may instead be
written “in stateSuper”.

Abstraction

With hierarchy, one may also abstract the contents
of a superstate, moving its substates and the transi-
tions between them to a separate, lower-level stat-
echart. This is clearly of some practical use since
a statechart may otherwise become too large to be

1



viewed comfortably on the screen or printed on a
single page.

However, one should not assume that this kind
of abstraction will add to the model’s understand-
ability; indeed adverse results reported by one
group of users led them to advocate minimizing
the number of layers of abstraction [5]. In fact, it
can be argued that there is a general problem with
abstraction in finite state machine models as com-
pared to models of other kinds [1]. Below, I de-
scribe an error that would have been much more
difficult to detect had abstraction been used.

Transition Dependence

Figure 1 (a) shows two orthogonal components.
The transitions in one are dependent on the other
being in stateY. Figure 1 (b) shows how hierar-
chy may be used to show this dependency visually.
Note the use of the history mechanism to ensure
the state of the second component (whetherA or
B) is remembered.

The fundamental problem with history is that it
confuses the two otherwise quite distinct concepts
of hierarchy and parallelism (or orthogonality): As
emphasized by the need to remember the “previ-
ous” substate of the superstate with a history en-
trance, the substates are properly regarded as those
of a component with an existence independent of
the superstate. The effect of an apparently innocu-
ous little circle with a ‘H’ is completely to trans-
form the semantics of the substate-superstate rela-
tionship.

Consider a statechart in which all the states are
superstates whose contents have been abstracted
and are shown only on separate diagrams. Sup-
pose there are two orthogonal components, one
with statesA andB, the other with statesX andY.
Now if the system is in statesA andX then to de-
scribe the overall state of the system at a finer level
of detail one could normally assume one needs to
consider only the substates of these. After all,A
andB, for example, are mutually exclusive and so
the substates ofB should not be relevant. But ifB

Y

X

p

p

Y

B

A

q (in Y)

q (in Y)

B

A

q

q

H

Y

X

p

p

(a) (b)

Figure 1: Hierarchy with history.

has a history entrance then this assumption is in-
valid since a parallel state machine has effectively
been hidden at a lower level. By mixing up hi-
erarchy and parallelism, the function of memory
is shared between states and histories and the in-
tegrity of the concept of a state is weakened.

State Variable Instantiation

Hierarchy may also be used to, in effect, instantiate
a new finite state machine (in statecharts terminol-
ogy, an orthogonal component). Figure 2 shows a
stopwatch taken from the example in [3]. In this
case, the stopwatch is described either by a single
state if it is stopped and reset to zero or by two
states, one to indicate whether it is stopped or run-
ning and the other to tell us whether it is displaying
the elapsed time or the last lap time.

Instantiation of finite state machines is normally
done above the level of the finite state model. One
may, for example, model the behaviour of an ob-

2



zero

d (in off) b

off

on

b b

run

lap

d
d

(in on)

reg

display

stopwatch

Figure 2: Stopwatch state of digital watch.

ject using a statechart and indicate in a higher level
diagram or other description that one or more in-
stances of that object can exist and specify when
these are created and deleted. Although this is gen-
erally a more flexible and powerful approach, it
seems unsuitable in the case of the stopwatch. For
example, if the statechart completely models the
state of the stopwatch for some of the time with
a single state variable (stopwatch) then it seems
preferable for it to continue to do so even when
two (displayandrun) are needed.

However, the stopwatch example is not actually
one in which a need suddenly arises for an addi-
tional variable to model the state: In statezero,
the stopwatch is not running and it is displaying
the elapsed time (which happens to be zero) and
so this state really represents a combination of the
two state aspects otherwise modeled separately by
the display and run components. The stopwatch
model could be replaced, for example, by either of
those in Figure 3.

Of course, in these alternatives,displayandrun
are still instantiated on entry tostopwatch, one of

many states in the model of [3]. However, we
could also makedisplayandrun orthogonal com-
ponents at the top level of the model (we might
then call the formerstopwatch-display-modesince
it reflects the actual display only in statestop-
watch); in the full digital watch there is a deep his-
tory entrance tostopwatchand so the nesting of
states withinstopwatchis really a way to make the
transitions between them conditional on being in
this state.

In the digital watch example there are two other
cases of orthogonal components appearing within
a state (that is, other than at the top level - which
is not really a state as such). One is to model beep
test functionality, wherein the watch beeps if two
buttons are pressed at the same time. Again, a state
can always be associated with this function so that
we may say it really belongs at the top level: when-
ever the system is not in the superstate containing
thebeep-testcomponent, the beep test is implicitly
in an inactive state.

The other use is in order to model a statedead
which corresponds to the battery being removed or
exhausted. Because of this, all the other orthogo-
nal components, which would otherwise be at the
top level and so always exist, are shifted down one
level into analive state. Once again, this does not
mean that no state can be associated with these
components: If the battery is dead then clearly the
light is off, the beep test is inactive, the display is
blank, and so on. Further, modeling the statedead
really serves no purpose other than to demonstrate
the notation. If the statechart is to serve as a de-
sign for the internal logic of the watch then clearly
the statedeaddoes not belong in the model. If its
purpose is to describe or specify the external be-
haviour of the watch then including the statedead
is hardly more useful than including a state like
broken.

In the digital watch example there are no cases
where the creation of orthogonal components on
entry to a superstate corresponds to any need for
an additional state variable, that is, one that has no
meaning outside that superstate. In the author’s ex-

3



stopwatch

lap

d
d

(in on)

reg

zero

b(in off)
d

rundisplay

off

on

b b

stopwatch

rundisplay

off

on

b b

lap

d
d

(in on)

reg

d (in off) /
reset time

(a) (b)

Figure 3: Alternative stopwatch models.

perience, this is always the case and so alternatives
to statecharts, such as the ordinary state transition
diagram, do not suffer in comparison.

Expression of a Constraint

The real effect of putting the statezeroon a sepa-
rate level, as in Figure 2, rather than keeping all the
states on the same level, as in Figure 3 (a), is to ex-
press a constraining relationship: In statezero, the
stopwatch must not be running, that is, component
run must be in stateoff. In Figure 3 (a) it is per-
haps not immediately clear that this constraint is
satisfied. In Figure 2, the statezero in effect mod-
els not only the state of the display component but
also that of therun component; consequently the
constraint is satisfied by the semantics of the state
itself.

Of course, the clarity of the expressed constraint
then depends on knowing the semantics of the
combined state. The interpretation of the statezero
in Figure 2 is obvious only because stopwatches

are familiar; one needs to know that in statezero
the stopwatch does not run in Figure 2 as well as
in Figure 3 (a).

This application of hierarchy would be more
useful if all constraints were always modeled. In
that case, the model would supply all the infor-
mation on what state configurations were possible.
For example, one could tell at a glance from Fig-
ure 2 that there were a total of five possible state
configurations in the stopwatch:zeroand the four
combinations of the states from thedisplayandrun
components. If it was subsequently found, perhaps
through an automated check, that it was not possi-
ble fordisplayto belap whenrun wason then this
could be flagged as an error (to be corrected either
by making this configuration reachable or by re-
placing the orthogonal components with three sep-
arate states).

Unfortunately, if the model is more complex
then specifying the possible state configurations
within the statechart may lead to a fairly intricate

4



diagram. There may be more states and many
more transitions, including branching transitions
perhaps with multiple branches where several par-
tially independent aspects of the system state are
involved. Compared to the alternative of simply
modeling separate orthogonal components at the
top level without attempting to explicitly indicate
which combinations of their states are possible (at
least within the statechart), this use of hierarchy
may be judged undesirable or even impractical. As
long as this may be so in specific instances, it can-
not be made a general convention.

3 Subtlety

Adjectives like “concise,” “subtle” and “powerful”
seem to describe statecharts pretty well. In general,
these may be regarded as positives. For example,
conciseness is obviously preferable to useless rep-
etition and many people enjoy subtlety. These at-
tributes are strongly related to the relatively high
degree of structuring possible in statecharts which
means that a single aspect of a statechart model can
have broad implications for behaviour.

To show the power of statecharts, Harel de-
scribes how easy it is to add a beep-test function to
his digital watch model. To test the beep, the user
keeps two buttons pressed at the same time. This is
easily modeled by abeep-testcomponent with four
states: one in which neither button is pressed, two
in which one of the buttons is pressed and another
in which both buttons are pressed and the watch
beeps; the transitions between these states occur
on pressing and releasing the buttons. To neatly
express the fact that the beep test only operates in
certain states, it is made an orthogonal component
within a superstate which encloses those states.
Harel then works through a scenario to demon-
strate that the model works as expected.

However, this change also introduces an error.
Figure 4 shows the position ofbeep-testwithin the
overall model (many other states and orthogonal
components are omitted from this diagram). Sup-

pose in thetime state that one of the two buttons
to activate the beep test is pressed, causingbeep-
test to enter (say) state10. The time of an alarm
is reached causing the watch to enteralarms-beep.
The user now releases the first button (this has no
effect) and presses the second button, causing a re-
turn to statedisplays. Because of the deep-history
entrance, the watch is again in statetimeandbeep-
test is again in state10 – indicating that the first
button is still pressed (which it isn’t) and that the
second button is not currently pressed (which it is).
Pressing the first button now fails to activate the
beep test. Alternatively, if the second button is re-
leased and pressed again then the beep test is incor-
rectly activated without pressing the first button.

Presented as in Figure 4, this error becomes ob-
vious. However, it was not initially apparent to this
author even after a fairly close examination and
was only detected when converting the model into
another notation. The error would be even more
difficult to detect if the contents of thetime su-
perstate had been abstracted and shown only in a
lower level statechart – for it would not be present
in either statechart considered separately. By using
powerful constructs which affect the behaviour in
many different cases it is possible to create a very
concise model. Unfortunately, as in this instance,
it also becomes easier to overlook unexpected im-
plications.

It is possible to identify other unusual scenar-
ios involving the beep test function in which the
response is questionable but, unlike the previous
example, not obviously erroneous. This is an-
other problem with subtlety: Is the behaviour in
a particular case deliberate or is it an unintended
side effect of structure introduced for some other
purpose? This is not a problem if the statechart
is merely a design but if it is also the specifica-
tion then one must consult those who created the
model. If they are available and can remember or
at least agree on the correct response then perhaps
one might compensate for the model’s subtlety by
recording their answer so that at least no one else
will need to ask the same question. But would it

5



H
*

beep

00

10 01

beep-test

alarms-beepdisplays

time

Figure 4: Beep test component in digital watch model.

have been better if the specification had been in a
more explicit form to begin with?

4 Amenability to Inspection

To discover errors like that described above, one
must perform simulations, either mentally or with
computer assistance, to see the response of the
model in various scenarios. However, this is ef-
fectively testing and for a complex model it is nor-
mally impractical to test all sequences of events
which might expose an error.

Further, while the graphical nature of state-
charts allows rapid random access to information,
it does not naturally invite or support systematic
review. In trying to proceed methodically through
the states and transitions, the experience of this au-
thor is that the mind is easily led by the eye; to
complete a comprehensive more-or-less linearly-
ordered review in the face of a fundamentally un-
ordered model is difficult. It is not enough to check
each part separately as the hierarchical structure

(and broadcast events) means the parts may be re-
lated in relatively complex ways. To check and to
better understand one part of the model, one makes
detours to other parts and after several detours one
may lose track of what relationships have been
considered thoroughly and what has been merely
understood.

Also, it is easier to detect an error which is
present in the model than an error of omission (un-
less it is a major one). A statechart model is always
formally complete and remembering to check that
all the necessary responses are included is difficult
when one is busy checking the transitions which
are present.

5 The Rubik’s Cube Effect

In statecharts, states are arranged in a strict hierar-
chy so that each state may be a substate of at most
one immediate superstate. It would often be con-
venient to violate this rule. To take a simple exam-
ple, if one is clustering states to reduce the number

6



of transitions then statesA, B and C might share
the same exit butC, D andE may respond identi-
cally to some other event. As they overlap on state
C, one cannot cluster both groups into superstates.
When hierarchy may also be used for other pur-
poses, the number of competing alternatives like
this increases.

While recognising some semantic issues, Harel
was originally convinced that allowing states to
overlap would greatly enhance statecharts [3].
However, in spite of repeated requests for this from
users, later work indicated that extending the no-
tation in this way required definitions which were
too complex for it to be generally recommended
[4]. (Note also that is somewhat incompatible with
using hierarchy for abstraction.)

To construct a statechart model one must there-
fore decide on a unique hierarchy from the com-
peting alternatives one can imagine. In a complex
model, what seems at first to be the best choice
might appear less desirable as modeling advances.
This is especially likely where the model is being
constructed as part of a specification process since
one does not initially know all the details of be-
haviour to be included.

Though the analogy is obviously exaggerated, a
statechart model, as a relatively structured entity,
may be compared to a Rubik’s Cube: In the course
of solving the cube, it is necessary to disrupt partial
solutions; and as more of the existing structure em-
bodies the desired configuration it becomes more
difficult to incorporate new changes. Similarly, in
a statechart one may, for example, realise that all
of the transitions between the states of component
A should be made dependent on the system being
in a particular stateX of an orthogonal component.
To model this, one might move the states ofA to
make them substates ofX and add a history en-
trance to this state. However, one then finds that a
third component is disrupted by this change: One
of its transitions contains the conditionin Y where
Y is a substate ofA – but even with history the sys-
tem can no longer be “in”Y unless it is also inX
and so a side effect of the change is to alter the

conditions in which this transition is allowed.
After the gross structural change, one may there-

fore need to make further adjustments to cancel
out such side effects. The overall change then
comprises a number of steps. Following our anal-
ogy, these steps may be likened to the sequence of
moves one must remember in order to reverse the
temporary disorder induced in a partially-solved
Rubik’s Cube. Furthermore, if one omits a step
or makes some other mistake in the changes then
it may be much less obvious in the statecharts than
would be a square of the wrong colour on one side
of the cube; the side effect described in the previ-
ous paragraph is one that might easily be missed.

The point is that during specification one should
be less concerned with structural issues. Anything
too much resembling the solving of a puzzle con-
stitutes design and is best kept as a separate ac-
tivity. One may then concentrate on establishing
the facts of the behaviour first without the distrac-
tion of having to continually work out how best
to alter the statecharts to efficiently represent this
behaviour and checking that the model does suc-
cessfully capture one’s intentions. Though design
itself may remain a challenge, design decisions are
at least deferred until they can best be made, that
is, when all the facts are known.

6 Broadcast Events

A well-known criticism of statecharts is of broad-
cast events between orthogonal components. Com-
pared to models in which directed communication
between separate parallel state machines are shown
on a higher level diagram, broadcast events make it
more difficult to see the relationship between dif-
ferent parts of the model. The same criticism can
be made of the capability to refer in the condition
of a transition to the state of another component.
Of course, modularity can be restored very simply
by limiting the use of orthogonality in a statechart
and instead using separate statechart models which
communicate where necessary by directed events;

7



the broadcast events and states within each one are
invisible to the others.

7 Understandability

Event sequencing and priority can be a source of
confusion in a statechart. If two transitions may be
triggered by the same event, which is taken first?
The answer may affect the overall response. What
if a transition between substates of a superstate and
a transition from the superstate itself may be taken?
Issues of causality and synchrony involving con-
ditions on events can also arise. Even if the se-
mantics prescribes a unique response and this is
remembered and understood by the reader, trac-
ing through a causal sequence may be difficult and
lead to errors. Of course, part of the problem is not
the absence of a precise semantics but the presence
of dozens of alternative ones (some of these were
surveyed in [8]; others have been proposed since
then). In general, the modeler is well advised to
keep the statecharts simple enough to avoid situa-
tions where confusion may arise.

8 Why are Statecharts Popular?

The popularity of statecharts in the academic world
can be attributed to the interesting problems posed
by the notation’s semantics and the seemingly end-
less potential for modifications and alternatives
which semanticists like to propose and explore.
Many variations have been proposed and entire
theses have been written on the subject, filled with
(to the practitioner) obscure theoretical results.

Nevertheless, most semantics are broadly con-
sistent with the intuitive, operational interpretation
of a practitioner working with a typical statechart.
The addition of hierarchy to the ordinary state tran-
sition diagram brings more power and flexibility
(if this power is akin in some respects to that of a
“goto” statement in a programming language then
this at least is not obvious). The graphical rep-
resentation is also an attraction. Not only does it

carry the promise of something that can easily be
understood by following the arrows, it provides an
opportunity to create something which is not only
logically correct but also aesthetically pleasing.

The use of subtlety allows one to create a cun-
ning and efficient model. Even if one is aware
that one’s primary objective is to describe the be-
haviour rather than to find the most efficient repre-
sentation, there is no denying the immediate satis-
faction of finding a neat way to model something.

However, if the same subtlety leads to an error,
most practitioners – who might well object to using
a less visually appealing but ultimately more effec-
tive approach – are likely simply to blame them-
selves for making the mistake. Once seen, an error
in a statechart model is easily understood; one per-
haps feels a little foolish for having missed it; the
model is duly fixed and, lo, the fix can also be un-
derstood. Such errors are regarded as a fact of life
which reviews and testing are there to find. An er-
ror which is somehow discovered after testing in-
dicates a flaw also in the tests (even though test-
ing every possibility is usually impractical). Fur-
ther, since errors are much less likely in relatively
simple models, it is easy to attribute them to the
size and complexity of the model. Overall, one is
unlikely to link errors to the relative subtlety of a
given model, associated in its construction with a
sense of satisfaction; much less to link them to any
more general cognitive issues with the notation.

9 Conclusions

The problems described above will not be signifi-
cant in relatively simple models. Some issues also
affect other notations though perhaps to a lesser de-
gree. For example, even if hierarchy is not used,
it may be necessary to restructure a model where
it becomes apparent that a single state machine
would be preferable to two parallel ones which be-
come too interdependent.

However, many problems relate particularly to
the hierarchical structuring of states unique to stat-

8



echarts. Of the identified uses of this feature, clus-
tering to reduce the number of transitions in a dia-
gram is the most convincing. Using hierarchy for
abstraction also seems useful in order to limit the
size of statecharts for practical reasons. However,
there should be less need for this if parallel state
machines are modeled using separate statecharts in
the first place rather than orthogonal components
or nesting within a state using the history mecha-
nism – the most dubious of the uses of hierarchy.

Many of the above criticisms apply to the use
of statecharts for specification rather than design.
However, statecharts are generally regarded as a
specification notation (and indeed as a kind of for-
mal method of specification). An advertisement
for one of the tools supporting statecharts claims
that the statechart specification serves also as the
design, allowing one to skip the design phase of a
project. An alternative view, consistent with ob-
servations above, is that to use statecharts in this
way is in effect to go straight to design, skipping
specification.

The direction of some research has been towards
simplifying statecharts to make them more suitable
for specification [2]; however, it is interesting that
one extended research effort into the specification
of process control systems began by using state-
charts, modified the notation, and ultimately pro-
posed a completely different approach [7, 5, 6].

References

[1] M. Breen. (2003) On abstraction in finite
state machine models. [Online]. Available:
http://mbreen.com

[2] M. Glinz, “Statecharts for requirements spec-
ification - as simple as possible, as rich as
needed,” inProc. of ICSE 2002 Workshop:
Scenarios and State Machines: models, algo-
ritihms and tools, 2002.

[3] D. Harel, “Statecharts: a visual formalism for
complex systems,”Science of Computer Pro-
gramming, vol. 8, pp. 231–274, July 1987.

[4] D. Harel and C.-A. Kahana, “On statecharts
with overlapping,”ACM Transactions on Soft-
ware Engineering and Methodology, vol. 1,
no. 4, pp. 399–421, Oct. 1992.

[5] N. G. Leveson, M. P. Heimdahl, H. Hildrith,
and J. D. Reese, “Requirements specification
for process-control systems,”IEEE Transac-
tions on Software Engineering, vol. 20, no. 9,
Sept. 1994.

[6] N. G. Leveson, M. P. Heimdahl, and J. D.
Reese, “Designing specification languages for
process-control systems: Lessons learned and
steps to the future,” inProc. ESEC/FSE ’99,
7th European Software Engineering Confer-
ence held jointly with the 7th ACM SIGSOFT
Symposium on the Foundations of Software
Engineering, 6–10 Sept. 1999.

[7] N. Leveson, M. Heimdahl, H. Hildreth,
J. Reese, and R. Ortega, “Experiences using
statecharts for a system requirements specifi-
cation,” inProc. Sixth International Workshop
on Software Specification and Design, 1991.

[8] M. von der Beeck, “A comparison of state-
charts variants,” inFTRTFT 94: Formal Tech-
niques in Real-time and Fault-tolerant Sys-
tems, ser. LNCS, W. d. R. Langmaack, H. and
J. Vytopil, Eds., no. 863. Springer Verlag,
1994.

9


