
On Abstractionin Finite StateMachineModels

MichaelBreen

12 September2003(Draft)

Abstract

Informationhiding is a long establishedprinciple in softwareengineer-
ing. However, in thecontext of finite statemachinesa contraryprincipleof
informationexposurehasbeensuggested.Using a simpleexample,we ex-
aminewhy a provenabstractionmechanismwhich workswell in otherareas
maybelesssuccessfulwhenappliedto a finite statemachinemodel.

After usingStatecharts[3] to specifyan aeronauticalapplication,Levesonet
al. [5, 6] reporta difficulty that arosewith hierarchicalabstraction:Transitions
involving superstatesbecamedifficult to understandwhenthesubstatesthey ulti-
matelyconnectedwereshown separatelyon lower level diagrams.Fromthis, they
concludethatinformationhiding[7] impairedthespecification’s understandability.
For requirementsspecifications,they recommendinsteadmaximizing“information
exposure.”

The problemthat we perceive and describehererelatesneithergenerallyto
requirementsspecificationnor specificallyto Statecharts.It is a problemwith ab-
stractionpeculiarto finite statemachine(FSM) models.

To illustrate,we examinehierarchicalabstractionasusedin StructuredAnaly-
sis, [2], with its equivalent in Real-Time StructuredAnalysis/ StructuredDesign
(RTSASD)[8, 4]. Figure1 shows thegeneralform of a dataflow diagram(DFD)
asusedin StructuredAnalysis.A datatransformin a DFD is labelledwith anac-
tion describingwhat it does.For example,a transformcalled“ConfigureAlarms”
mightacceptinputdataflowswhichindicatewhethervariousfaultsarepresentand
theseveritiesassignedto thesefaultsandproduceanoutputflow indicatingwhich
alarmsshouldbe active. The “how” of a transformis thendescribedat a lower
level, perhapsusinganotherDFD with moretransforms.

Regardlessof theefficacy or otherwiseof thetop-down approachitself, a data
transformis generallysuitedto this kind of abstractionsinceit canbeunderstood
in termsof its functionandits inputsandoutputs.Therelationshipbetweendata
transformsand dataflows is one of function and necessity:the function of the
transformis to producetheoutputflows; to do this it needstheinput flows.

As analoguesto datatransforms,controltransformsin RTSASDacceptcontrol
flow inputsandmaybeseenastransformingtheseinto controlflow outputs.Con-
trol flowscarryinstantaneouseventsandcontroltransformsareultimatelyspecified

1



data store

transform
B

transform
A

transform
C

output
data flow

input
data flow

Figure1: Dataflow diagram.

asFSMs(flows which alwayshave a definedvaluearealsopossible,as is state-
lesslogic). TheeventscausetheFSMsto changestateandto emit furtherevents
(or signals)so that, in commonwith other approaches,the overall behaviour is
modelledby asetof communicatingFSMs.

Considera modelof partof thebehaviour of a compactdiscplayer: two con-
trol transforms,TrayandMode, asshown in Figure2 alongwith thecorresponding
statetransitiondiagrams.As anexampleof how this operates,supposethatTray
is ClosedandMode is in statePauseandthe open/closebutton is pressed.This
causesTray to changeto Openingandemit thesignals stopto whichModeinstan-
taneouslyrespondsby changingto Stop. NotealsothatModeis theselectedmode
anddoesnotnecessarilyindicatethecurrentactivity: If thesystemis in state(Stop,
Open) andtheplay eventoccurs,it changesto (Play, Closing) – meaningtheCD
will beplayedwhenthetrayhasfinishedclosing.

For simplicity and to reduceclutter, most of the transitionsin Figure 2 are
unlabelled.Also, theFSMshavenooutputs,thatis, they don’t actuallydoanything
(suchasactivating a motor to closethe tray) other thanmodela very simplified
systemstate.Objectionsmay beraisedto theparticularexample,for example,it
mightbebetterin thiscaseto replaceTrayandModewith asingleFSM.However,
in thegeneralcase,relatively independentaspectsof behaviour will bemodelledby
separateFSMswhicharesynchronizedasin thisexampleto accountfor remaining
dependencies.

Crucially, however, the control flows betweenthe two control transformsare
really a way of makingthe statesandstatetransitionswithin a transformvisible
at its interface.For example,s closein effect saysthatModeis no longerin state
Stopandsothetrayneedsto close.This is unlike adatatransformwhichabstracts

2



Play

Stop

Open

Closed

Closing

Pause

Opening
s_close |
openClose

play
s_close openClose

s_stop

Tray

openClose

closed

opened

s_close

s_stop

Mode

stop

pause
play

s_stop

Figure2: Controltransformsandtheir statetransitiondiagrams.

3



clearlysomeoperationondata,or, for example,anobjectencapsulatingtheknowl-
edgeof whethersomedataarestoredin anarrayoralinkedlist. Of whatthecontrol
transformattemptsor appearsto hide,it is only thetriggersandconditionson the
transitionsthatcan,in general,reliably remainhidden.Thus,thoughthediagram
showing the control transformsandthe interactionbetweenthemis superficially
similar to adataflow diagramwith datatransforms,it differsin thatit cannotfully
beunderstoodasaself-containedlevel of abstraction.

To make this clearer, imaginethat, in order to model recordfunctionality, a
Record stateis addedto Mode. Also, Tray shouldnot respondto pressesof the
open/closebuttonwhenModeis Record; sincerecordingis a critical operation,it
mustbestoppedexplicitly by pressingthestopbutton.Thesimplestway to model
this is simply to make theRecord statevisible to Tray, for example,by aflag (like
a datastoreon a DFD) written to by Modeandreadby Tray. An alternative might
beto “filter” all theopenCloseeventsthroughModeandsimplyhave it relaythem
to Tray in every stateexceptRecord. However, evenwheretheRecord stateis not
directly madevisible, thecontrol flow which modelsthe consequentdependency
makesno senseunlessyou know thereis sucha state.In a sense,theFSM is the
“what” aswell asthe “how” at thesamelevel of abstraction;we cannothide the
latterwithout alsohiding theformer.

Further, therelationshipbetweencontrol transformsandthecontrolflows be-
tweenthemis generallynot oneof functionandnecessity. Supposetheflag of the
previousparagraphwereomittedfrom themodel– incorrectlyallowing thetray to
beopenedevenif ModewasRecord. Unfortunately, this omissiondoesnot cause
any obviousinconsistency or incompleteness:theTray transformdoesnotneedthe
flagto operatenor is it thefunctionof theModetransformto write to it. In contrast
to mostsimilar casesin a datatransformmodel,theonly effect is a changein the
behaviour in aparticularcombinationof states.If it is inconceivablethatthiserror
couldbeoverlookedit is only becausetheexampleusedhereis a trivial one.

Whatever theproblems,abstractionstill obviously servesanessentialpurpose
in breakingup a modelwhich could not legibly fit on onescreenor onesheetof
paper, thusmakingit physicallymanageable.However, onemayfind thatthemost
effective way to understandandreview suchmodelsis to print out all the sheets
and lay them out on a large deskallowing one to skip aroundquickly between
levels andFSMs andexamineeachpart in the context of the othersto which it
relates.Thus,blind applicationof theso-calledsevenplusor minustwo principle
to show only acognitively manageablechunkof dataatoncewouldbemisguided.
A large and complex FSM model may be betterregardedas a map, which one
breaksuponly for reasonsof practicalnecessity. Themodelof adigitalwatchin [3]
providesa goodexample:By usinga singlelarge fold-out pagefor thestatechart,
the publishersallowed for a diagramwhich is clearly morecomprehensiblethan
the alternative of abstractingthe contentsof someof the higher level superstates
on to separatediagrams.

Being able to seemore of the model at oncemay also help to avoid errors
similar to that involving theRecord statein theexampleabove. However, even if

4



onecanseethestatesof separateFSMsin reasonableproximity to eachother, this
in itself doesnot entirely solve the problem. To do this, onemay systematically
considercombinationsof statesin asefficientamanneraspossible[1] In practice,
this is not likely to be a major issueexcept in complex modelswherethereare
many possibledependenciesbetweenthe differentFSMs,suchasmay arise,for
example,in certainkindsof interactive systems.

In conclusion,we have seenwhy FSM modelsmayresistabstractionin a way
thatotherkindsof modeldonot. While abstractionremainsusefulandis frequently
necessaryin suchacontext, oneshouldbealertto its consequencesin orderto best
decidewhetherit is necessaryor beneficialin aparticularcase.

References

[1] M. Breen. (2003) Statestepspecificationtechnique: User guide. [Online].
Available:http://statestep.com

[2] T. DeMarco,StructuredAnalysisandSystemSpecification. EnglewoodCliffs,
N.J.: PrenticeHall, 1979.

[3] D. Harel, “Statecharts:a visual formalismfor complex systems,” Scienceof
ComputerProgramming, vol. 8, pp.231–274,July1987.

[4] D. J. Hatley andI. A. Pirbhai,Strategiesfor RealTimeSystemSpecification.
New York: DorsetHouse,1988.

[5] N. G. Leveson,M. P. Heimdahl,H. Hildrith, andJ. D. Reese,“Requirements
specificationfor process-controlsystems,” IEEETransactionsonSoftwareEn-
gineering, vol. 20,no.9, Sept.1994.

[6] N. Leveson,M. Heimdahl,H. Hildreth,J.Reese,andR. Ortega,“Experiences
usingstatechartsfor asystemrequirementsspecification,” in Proc.SixthInter-
nationalWorkshopon Software SpecificationandDesign, 1991.

[7] D. L. Parnas,“On the criteria to be usedin decomposingsystemsinto mod-
ules,” Communicationsof theACM, vol. 15,no.12,Dec.1972.

[8] P. T. Ward andS. J. Mellor, Structured Developmentfor Real-Time Systems.
EnglewoodCliffs, New Jersey: PrenticeHall, 1985.

5


